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CHARACTERIZATION THEOREMS INVOLVING THE
GENERALIZED MARKOV-TOLYA DAMACE MOOLT,

by 3
» !

B. Raja Rao and K. G. Jarardan
Department of Mathematics and Statistics

University of Pittsburgh, DA 15260

1. NTRODUCTTON

Let the integper-valued random variable 1 denote tha size of a family,

which produces two types of children, say bovs and girls, for simplicity,

with probabiljities p and q, where p + q = 1. Ilet NA and NB denote the

numbers of boys and girls, respectively, where M = rf + M,. If the accent
A I

=

is on the number N[, we say that M is reduced to “A by menns of the binomial
|

damage model

n - !‘
P(N, = kjN = n) = (k>pkq“ k, k=0, 1, 2,....n. :

It is well tnown that the numbers N\ and NB are independent if, and only
t

if, N has the Poisson distributfon. Covariance fornulas between ¥ and N have

been obtained by Raja Rao et ai {1973) and Eija Rao (1991) for seme general

clasges of distributions of N, such as the 6.P.8.D, and the M.P.S.D. of Gupta

(1974), These claszes include many of the etandard diccrete dietributions,




generalized distributions, such as the Generalized Poisson, Nepative Bi-
nomial and the lLogarithmic Scries distributions.

In the present paper, the Geueralized Markov-Tolya and the Quasi-
Binomial random damage models arc discunssed.  Covariance formulas for the
numbers NA and NB are obtained for the G.P.S.N. and M.P.S.D. classes of
distributions. A characterization theorem is proved for the Generalized
Markov~Polya damage model, which says that NA and “B are independent if,
aud only if, N has the Generalized Polva-Eggenberypoer dicrribution. This
tesult generalizes Consul's (1975) characterization of the Ceneralized
Poisson distribution for the Quasi-Binomial damane nodel,

These characterization theorems tocether with thy covarianee formulas

for the nunbers N\ and N, lead to mome interecting ident itics.  Theare
£ B

identities involve the expectations of the sum of a randen nnnbher of
functions of the random variable N, where N has the Generalized Polva-

Eggenberger or the Generaljzed Poisson distribnt jon,

2. A GENERAL COVARTANCE 1oy,

Theorem (2.1): Supposc that an shsereation 1 is reduced (o N according to

IA

some random damape model such that
E(NA]N) =Np, o<p<l ... (2,0
Further, let NA + NB = N. Then the covaivitnee beoweonn the two random

variables N/\ and N“ is given by the equation

Cov(NA,Nn) = p VvV (N) -V (NA) ce (20

i

~ oy —— ——




Proof: From equation (2.1) we get

E(N,) = F (E(NA[N)} = FE(N)p

similarly E(NB)=E(N)q,where p+q=1. To find the variance of NA’ we use

a result from Chiang (1968):

V(N = v {E(NAIN)} +E { v(NA[n)}

L}

p2 V(F) + E {V(NA|H)} e (203)
Similarly

= 9 s " (N }
Cov(N,,N) = Cov {E(NAlN), L(NBIN)} + E{Cov .A,NB)IN
= pq V(N) + E {COV(NA,NB)IN} v (2.0)

Consider now

. . s ey 1
Cov (¥, ,N.) [N EQN,GN TR - s ey 1)
= E{N,(N-N)[N} - N7

E{N,(N-R ) | Pa

= N°p - E(NZIN) - Nuq

T NTp = (VN [R) ok [HOY D TTY -7

1

- 2.0
V(NAIN) cee (2.9)
Using equation (2.5) in (2.4), we get
= - F K N

Cov(N,,N}) pq V(N) h{V(dA[u)}.
An alternative formula is

Cov(N,,N.) = p V(N) - V(N,),
which proves the theorem.

Observe that no special random damage madel has been assumed, except
that cquation (2.1) holds, namcly, E(H[IH) = 'Ip. This 1s a very general

\

model. Further, the distribation of 1 is also left unspecified.




The following theorems are easily proved,

Theorem (2.2): Let the r.v. N have a Generalized Power Series Distribution

(G.P.S.D.) with the series function f (0), namely,

P(N=n) = a 8 >0, neT, f(0) >0, a >~ 0 i

where T is a subset of the set of positive intepers. Then, under the binomial

damage model, (Raja Rao et al, 1973)

d2
N = 2 e (2,
Cov( A’NB) pqo T log f (2.9 ’
It follows that :
Cov(NA,NB) : 0 according as log f (0)is Convex or Concave in €. i

This theorem includec many of the standard discrete distribntions, !{
For Fisher's logarithmic Series Distributicn, we oot |

{

1

£(8) = - log (1-0) and Cov(NA,N o0 if o N 0.632.

B)

Theorem (2.3): Let the r.v. N have a Modified Tower Series Distribution (M.P.S.D.)

with the probability function

i
P(N=n) = un{n(0)1"/f(0), a >0, g08) ~ 0, (M >0, n e T. }
Let the damage model be binomial, a2s hefore. Then (Raja Rao, 1781) !
: '
12 .
Cov(N,,N = {g(0)}? S o (7)) ... 2.6 ;
ov( A’ B) pq 8 an2 (o) o, (") (2.6) ,

The M.P.S.D. class includes thr iapgrangian (or Teneralized) Poisson
distribution, the Generalized Mepative Rinomial Jdiatribution and the
Generalized logarithmic Series Distrilmtion |, and their truncated forms,

among others.




-G -

Theorem (2.3) shows that 1f g(0) is an increasing function of 9, then

NA and NB are positively or negatively correlated if the function log f{0)

is convex or concave with respect to g(90).

In the next section, we introduce the Generalized Markov-Polya damage

model and obtain covariance formulas for N\ and NB
I3

3. THE GENERALTZED MARKOV-POLYA DAMAGE MODEL AND ITS SPECIAL CASES 4

Definition(3.1): A r.v. N is reduced to NA by the Generalized Markov-Polya !

Damage Model if the conditional distribution of NA given ¥=n is given by

}

?

(x,c) (n-x,c) '

n '\ ab_ (a + xt) (b + FTE: (a + h + nt) s
K) a+ b

PO =[N P s M et AN ARRE |

ifa>0,b>0, 0z t<l, ¢ % 0, » =.0,1,2,...n, (Janardan), 1977). Here L

a(x,c) = a (at+c) (a+2c) (a+3¢) ... (a + »-1 ¢).

For cxample, a(0’1)=1, 20 x

(x,-D), (0

a = ala-1)(a-2) .... (a-x41)

a(x’l) = a[x] = a(a+l) (a42) ... Cat=-1)

(a+h)(x’c) = ax(] + E)(x,c/a) etc. ’ 2

A convenient and simple form of equation (3.1) is ohtained by letting
! p = a/(a+b), q = b/(atb), A = g/ (ath), o= o/ (ath)

Then the CGeneralized Markov-Polya damage model i




(x

) o =y (NX,4)
P(N, = x| N=n) =(“\ (p+x0) (gbta=xt) Q) o 5y > e (3.2)

X ;P p+xd (qtiv=x0) (I+n0) I
where O<p<l,  0O<q<l, 0¢0<l, 440,  prg-l.

This model contains several distributions as special cases, For instance,
(1) 6=0 and ¢=0 gives the binomial,

(ii) ¢=0 gives

- - _/ny B (p," B (q,D)
P(NA = x[h—n) = (x) X n-x
Bn(I,G)

where Bx(p,e) = p(p+x8)xhl. This is the Quagi-Binomial distribution.

Because of its importance in the sequel, we define this distribution as
follows:

Definition (3.2) A discrete r.v. M is rveduced to :A bw rhe Guasi-Binomial

age m 1 if the Conditional distyibutiocn ol N, given i=n is pgiven by
dam odel 1if the ditional dist t W, ¢ { by

n-x=-1

x~1
colveny = (Y _Pa [ ptxo) (Q*W:'
PN =xly=n) = (7)) P ( Foni) _ ) ceen (3.3)

where p+q = 1, p 2 0, 6 <1 and x = Q,1,2,....n, This reducrs to the

binomial damage model if 0=0,

(ii1) ©0=0 gives the Markov-Polya distvibut iou,

x-1 n=x--1
P(N,=x|N=n) =(:) T (ptid) 0 Lgiid)
j=0 3=
n-1
T (1+i)
j= 0

(iv) ¢=-1 gives the Quasi-llypergeometric distribat ion,




£ 1)

HX (p,) ”n—-x (q,m)

P(NA=x’N=n) = -
Hn (1,n)

vhere

p
“x(p,O) = m (p + X‘])

X

(v) ¢=-1 and 0=0 gives the hypergeometric distribution.
(vi) ¢=41 gives the Quasi-negative hvpergeometric disrribution.

(vii) 6=1, é=-1 or 0=0, =1 gives the negative hvpergeometric or (the
beta-binomial) distribution,

4, THE GENERALIZED POLYA-FEGGEXNBERGER NISTRIRUTION AND ITS SPECTAL CASES

Definition (4.1): A random variahble N is said rn have the Generalized Polya-

Eggenberger distribution, if its probabilirs fanction is piven by (Janardan
> ’ 1 P Py ’

n4n0
3 N b e
1973) D (p!nﬂ)(]") Sty
}Z‘ = = ——— e e e - DI - . . . ! .
(N=n) ptud n! o (4.1
when 0g0<1, ¢40, n=0,1,2, .... .

Some special cases of this distribution are the following:
(1) 0=0 gives the Polya-Yaorenberper distributien ({i.e., the neeative hi-

S

nomial distribution with p=-1-F and +-p/t.)

D e e .

b it




(i1) $=1 gives the generalized negative binomial distributlon

.
P (p-%nO)(n’l) f"‘n(l—f’)pﬂL
= = —_— !
P(N=n) ey = , Oge<l,

- A0

> T (p+n (P4+1)) RO=2)

e " _
n T (ptno+1) (1-¢)7P

where g(8) = 8(1-8)%,  f(p) = (1-8)77

(i11) 1In the Generalized FPolya-lggenberger distribution, if we take

%-= A and let ¢ »~ 0 such that g;— > M, it can be shawn that the resulting
distribution is the Generalizcd Poisson distribution. We define this
distribution for easy reference.

Definition (4.2): A discrete r.v. ¥ iz said ta hive the Generalized

Poisson (or lLagrangian Poisson) distributinon if its probability functien
) g P 3

9
is MO ) ‘
y=-1 o 4
P(N=x) = M (14x)) S L X=0,1,2. . (4.2)
-1
where M>0, 0gx<M .
:
The Generalized Poisson distribution is also a limiting form of the *
Quasi-Binomial distribution if p and ? are very small while n is large
such that np and nf are constant. 1
5. A CHARACTLRTZATTON THEORIM
- ‘~
Theorem (5.1): lLet a r.v.¥ b reduced to H\ by eans of the Gencralized |
! 1
Markov-Polya random damape model Skley - P(V\ = Flv=n) piven by cqua-
tion (3.2). Tet N_ =M - N . Then the randes vorviables U1 and N are
B A A B




- )

independent if, and only if, the r.v, N has the Generalized Polva-Eggenberger

distribution,

Proof: Necessity follows casily since the damage model is Generalized Markov-
Polya, we get the conditional probahility

(p+k0)(k’¢) (q+ﬁiﬁn)(“‘k’¢) (14nA)

P(N,=k, N =n-k|N=n) ={]) pq ——— e ) 2 (5:1)
(p+k0) . (g+n-—-k") (1+no) "
This gives the unconditional probability
P(N,=k, Ny=n-k) = P(N,=k, W= n-k|N=n) + P(N=n)
If N has the Generalized Polya-Lggenberger distribution with parameters (1, 2, ;1
$, B) 1t is clear that P(NA=k, NB=n—k) is fuctorizable, showing that NA and xB *1
are independent, ;f
To prove sufficiency, let NA and ﬁn be independent.  Denste ”n = P(N=r) "y
Then following Kruskail's (196Q) approach, we have
(14utve) (u-v)!
utY aave) (e ) P -rd .. 2
for some functions f(-) and g (). Neither D ner 20N can e merva, for f%
there is a positive preobability that NA“O and that Unfﬂ. Thus there ie a |
. .
function h(:) such that , o
f(u) g(v) = h(utv) . e . (5.3

for some non-negative integers. This s the Cauchy functional cquation,

vhose non-trivial solution is

f(u) = « ﬂlu v oglv) =d e

Av




1=
so that from eq (5.3)
1Yy !
, (1+ u+v 8) (u+v)! .. q/pk(u+v)
Ut s o o) (e )
or
1 (1+n9)("'¢')
s An
T = a o e
" (1+n6) n!
8/
Setting ex = —EL%:EL~—~— and using the fact that :Hn = 1, ve geot

1
a o = (1-8) /¢. Therefore N has the Generalized Tolva-Fepenhorzer dis-

tribution with parameters (1, 8, 4, 8).

Remark: It is seen from Theorem (5.1) that the numhers ﬁ\ and N, have

independent Generalized Polya-Fggenberper distributicns with probabhility

functions e
(x.4) pox
p (ptx0) """ 7 (1-3)
P(NA::x) = —_ {?" - ._\.;_ .
p+x0 %! "
and $0
. . AT
q (q+y0)(}") 2Y 7y
P(NB = Y) = T Tt T T
q+y0 ! ¢’

6. COVARTIANCE BETWELN THE NIPRTRS ﬂ\ and NB

Theorem (6.1): Let the r.v,N have any discrcete distribmtien. Further suppose

that the r.v.N is reduced to NA by the Generalized Markov-Polva damage model,

given by (3.1). Tf NA + Nn = N, the covariance hetween 2\ and XP iz given by

equation (6.5).

Proof: Obscrve that in the Generaliced Marlbov-Polva dasaze model, we do have

E(NA'N) = Nagb = Np, =so that Theorem (2.1) applies. TGhis sives




~10

Cov(N,,N,) = pV(¥) - V(N,) = pqv() - B (v NAln)) v . (5.1

Also from Janardan and Schaeffer (1977) we kuow that

ab N N-l U
VN = | e s e D)

a+b a+b  j=0  (atbhENUEGA )

GA2) oy ]
2 N:—l (atb) N {t+c) . (6.2)
= N'pq - pq & T
j=0 (a+bENLAN-J+) ) 7 T
t c
i = — = — ninator of the jt rm may be
Defining © pyan and ¢ s the denominator of the jth term may be

vritten as

e (4] R P
(a+b+Nt+N-j+1 0y (3+1,¢) ()Y e ST oy Y LG

This gives from equation (6.2)
N-1 nC gy
V(N [¥) = " pg —pq ¥ e e e e <. (6.4)
170 (a4 T o G

Substituting eq (6.4) 1in eq (6.1), we obtain

g7 d

Wl v

1

COV(N\'NP) pq V(N - E(nTY v o i T
o Froourme e =gl ) .

i.e.,
nG42) (o4 1)) ,
T L. L (6.5)

N-1
Cov(N ,N) = pq {E T e ~ ., =~ B
ATD j=0  (14N6E N-j) f)(J"'“)

Remarks: (1) An important special case ocvnrs chien we take 0=000 which is
cquivalent to taking t=c=0 in the Generaljced Moioe-Tolya dasace model, which

reduces to the hinomial damape nodel and gives




COV(NA’NR) = pq {(V(N) - BN,

as in Raja Rac et al (1973).

2) Another important case is when the r.v. has the Mdifjed Potor Series

distribution with p.f, as in Theoren (2.3).  “ince

E(N) = _£'(0) g(@)_ ,

eq (6.5) gives

N-1 NP (aug [— £ 5 7
Cov(N,, 1. = pq {E T h

3=0

(Lot mogar 4y G [

g ' () (M) }

oo . (5.6)

where the expectation is taken w.r.t. the M. P.S.D. The correspending results

for the Generalired Poisson, Generalized “legative Rian=is1 and ths Ceneralized

Logarithmic Series Distributions are obtained he cnitahiy chonaing the

() and g(90).

runctions

M —AM
For the Generalized Poissen, f( = ¢ and () « M e L Ve pget
[} : 2
N-1 nOF gy M©
Cov(l,,Npg) = pg (BT wom emm - oy R R
J70 (Beee Neiei (roren
. . . . ., B ~T . Afn - o
For the Generalised legative binominl, f{2) = (1-)"and a(2) = 2(i-7)
This gives
N"] ,(j+?) - i a N
N D) i
COV(NA ’NB) = pq{ I: :: -"-i'——'f_ﬂ_F‘:.: T A'f' ,_‘_']" k-) - -“—_p"'" - -~ 3 . . ((‘ - 8)
370 (e oy o i1y

S -



3). An interesting casec occurs when the rove® has the Sencral fred Polva-

Fggenberger distribution, as in eq (3.1. Since (Y - I AL , we get

from equation (6.5), H1=0) -

o I |

N-1 (3+2) ] 2.
Cov(NA,NB) = pq {F = AR G S, T B € )
=0 AN CRaRES

N

(L4804 N=jtl TS PRI

But in Theorem (5.1) we have praved that N, and ?W are intependent. This
IRy .

gives an interesting identity, which we summarize in the form o 4 theorem.

Theorem (5.2): Let the r.v. ¥ have the Generalized Polva- Fumenborper dia=

tribution given by eq (4.1). Then the feollowing identity Lolda:

2.
e Ve fuen Y - R . '
Gy e e C e (6D

(342 j
B{rp N (8
§5=0  (1446+ N-j+L ¢)

Observe that in equaticn (6.10), one has on the left hand silde the sunm
of a random number of functions of the r.v, !, and the expertation is te he taken

w.r.t. the Generalized Tolyr-Fagenberper diatyribution,

Al

Remark (1): As we have mentioned in Sectior Y0 taring ¢ 0 in the General fooed 3

Markov-Polya distribution gives the Ouasi-lifoomio! damagee el Clefinition (3.3)7.

'
0 . ok ; '
Using E'= A and letting 4 = O such that ﬁ * M, one obtains the dencralized
Poisson distribution from the Generalized Polya-Fppenherpger dictribution.
Making these parametric limiting operations, Theorem (5.1) reduces to a '

characterization theorem concerning the Cencralived Pajcoon dictrilation with
the Quasi-Binomial damage moderl, Tn this seprcc, onr Theoren €5.1) geperalires
Consul's (1975) result,

Remark (2): TIf we let c=0, {.c. 40, In coquation (6.5), =o pet the result:

Mol (142) R
Cov(NA,NB) = pq I8 5 e
J-0 (130

R A N S YR D

Gy




for the Quast=Binomial damage model, whatever bho the diaryihnt o af o,
Similarly takf{og #=0 in equation (6.6 pives Cov(® 1), whenever

N has the M,P.S.D,
Choosing, in particular, N to have the Ceneraliczedl Pojasen distribution ‘

glves,from equation (6.10), the ident ity

N-1 3+ 3 W2

E(sr N0 LM - (6.17)
G5 I H)!

3=0  (I+Ne) (13"

Remark (3): Making certain other parametric Pimitine operarico., it is

posaible to obtain a series of charactorirzation thesreoss ac oroeial eaves
from our Theorem (5.1).  Soire cxameles are a- foblocs: '

Choosing =1, cne obtaing the minci-neeat e Topores o 0 7 divtribution

from the Seneralized Marbov—ipolea d o oriharioan, 7 P e ciny o1, we
get the Generaliced Nepgative Dinomio? by v ilae fan, B TREE S L R A YRR A SPPR o Y2

|
as |

CORROLARY (1) to TYeovem (5,1);  Tat vt N vy e 1t ‘I\ Yoooveans of the
Suniihal Lo freorem o, ; ‘

quasi-nepative hepergeonct vic damave caded Do \ Then e random ;'
1)
. . . - : . . . . . . i
variables "'A and ‘Y{ are dncepeanten P00 e Te [T ITT PRI B SRV I !
Negative Pinomial distyibu? ivon. f
n
CORROLARY (2): Tet a rov,d be reduced to the vl 70 aeear Tinge to the nera- )
. \
So RN 2R D) A
tive hypergeometric (the heta-hinomial) dacaee » el Thon the nanber Y\ and :
N_ are independent f, and onlv 6, "7 bha the o ot fer Do i Jintribat ien,

B
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